Tripled best proximity point in complete metric spaces
نویسندگان
چکیده
منابع مشابه
Tripled Best Proximity Point Theorem in Metric Spaces
The purpose of this article is to first introduce the notion of tripled best proximity point and cyclic contraction pair. We also establish the existence and convergence theorems of tripled best proximity points in metric spaces. Moreover, we apply our results to setting of uniformly convex Banach space. Finally, we obtain some results on the existence and convergence of tripled fixed point in ...
متن کاملBest proximity point theorems in 1/2−modular metric spaces
In this paper, first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points. Finally, as consequences of these theorems, we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces. We present an ex...
متن کاملNon-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملBest Proximity Point Result for New Type of Contractions in Metric Spaces with a Graph
In this paper, we introduce a new type of graph contraction using a special class of functions and give a best proximity point theorem for this contraction in complete metric spaces endowed with a graph under two different conditions. We then support our main theorem by a non-trivial example and give some consequences of best proximity point of it for usual graphs.
متن کاملNew best proximity point results in G-metric space
Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2020
ISSN: 2391-5455
DOI: 10.1515/math-2020-0016